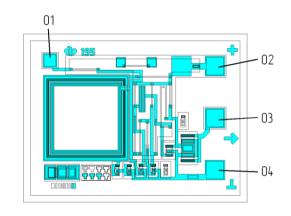


JSC "Proton"

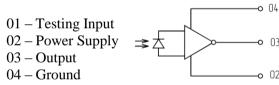
Photologic chip FS195

General description


FS195 chip is fabricated using Silicon Bipolar process technology. This chip is designed to be used in high speed digital optocouplers. Chip consists of a high gain linear amplifier and output Shottky transistor. Chips can be specially probed to satisfy customer's requirements.

Features

- LSTTL/TTL Input and Output Compatible
- High Speed Switching
- Open Collector Output
- Chip Size 1.6 x 1.2 mm
- Chip thickness 0.38mm ± 0.02 mm
- Metallization: top Aluminium
- Data transfer rate 5 Mbit/sec


Absolute maximum ratings

Storage Temperature	-65 °C to 150 °C		
Operating Junction Temperature	-55 °C to 125 °C		
Supply voltage	5.5 V		
Output voltage	15 V		
Output current	20 mA		

Contact pads sizes

Pad #	X, mm	Y, mm	Pad #	X, mm	Y, mm
01	0.084	0.084	03	0.124	0.124
02	0.124	0.124	04	0.124	0.124

Note – Proper operation is guaranteed with high-frequency ceramic capacitor $0.1~\mu F$ connected between power supply and ground pads not more than 10 mm away from chip's contacts.

Electrical Characteristics (Ta = 25°C)

Characteristic	Symbol	Unit	Min	Тур	Max	Conditions
Low Level Output Voltage	V _{OL}	V		0.4	0.5	I_{01} = 25 μ A, V_{CC} = 5.5 V I_{OL} =11 mA
High Level Output Current	I_{OH}	mA		0.001	0.25	I_{01} = 4 μ A, V_{CC} = 5.5 V V_{O} = 15 V
Logic High Power Supply Current	I_{CCH}	mA		5.5	9.0	$V_{CC} = 5.5 \text{ V}, I_{OL} = 0$ $I_{01} = 30 \mu\text{A}$
Propagation Delay (to Logic Low)	$T_{ m PHL}$	ns		40	50	R_L =510 Ohm, C_L =15 pF, E_e =50 mW/cm ² , Note 1
Propagation Delay (to Logic High)	T_{PLH}	ns		60	80	R_L =510 Ohm, C_L =15 pF, E_e =50 mW/cm ² , Note 1
Rise Time-Fall Time	t _r , t _f	ns			20	R_L =510 Ohm, C_L =15 pF, E_e =50 mW/cm ² , Note 1

Note 1 - E_e values are measured in the packaged device